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Deep	Algebra	Projects:	Pre-Algebra/Algebra	
Multiplication	Table	Algebra	

	
	

Topics		
• Distributive,	Associative,	and	Commutative	Properties	of	Multiplication	
• Using	variables	to	represent	and	analyze	patterns	
• Equivalent	algebraic	expressions	
• Simplifying	algebraic	expressions	by	combining	like	terms	
• Multiplying	polynomials	

	
You	may	think	of	multiplication	tables	as	“grade-school	arithmetic,”	but	they	contain	a	
treasure	trove	of	complex	and	subtle	patterns	that	students	can	explore	algebraically.	
The	Multiplication	Table	Algebra	project	introduces	a	variety	of	the	such	patterns	and	
invites	students	to	discover	and	analyze	some	of	their	own!		
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Stage	1	
	
	

Note:	A	blank	copy	of	a	multiplication	table	is	available	on	Handout	#1	near	the	end	of	
this	project.	Students	may	use	it	to	further	explore	questions	in	Problems	#1	and	#2	or	
to	discover	and	prove	some	of	their	own	patterns.	
	
What	students	should	know	

• Describe	patterns	using	algebraic	patterns.	
• Simplify	polynomials	by	combining	like	terms	
• Multiply	simple	polynomials,	including	binomials	by	binomials.	

	
What	students	will	learn	

• Recognize,	extend,	and	describe	complex	patterns.	
• Use	algebraic	processes	to	prove	conjectures.	
• Deepen	knowledge	of	known	algebraic	relationships	and	discover	new	ones.	
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Problem	#1	
	
	
		

	
	
	
	
	
	
	
	
	
	
	
	
	
	
Directions	

• Describe	patterns	involving	the	sets	of	three	shaded	squares.	
• Generalize	the	patterns.	
• Choose	a	“base	square”	to	represent	row	𝑎	and	column	𝑏,	and	prove	the	

generalized	pattern	algebraically.	
• Choose	a	different	base	square	and	repeat	the	proof.	
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Solutions	for	#1	
	
Notes	

In	the	Solutions	for	this	problem,	𝑎	represents	the	number	in	the	left	column	of	the	
multiplication	table,	and	𝑏	represents	the	number	in	the	top	row.	
	
Students	may	have	many	insightful	observations	that	are	not	in	these	Solutions.	

	
Describing	the	patterns	

Left	picture:	
• The	sum	of	each	pair	of	numbers	in	the	‘2’	column	equals	the	corresponding	

number	in	the	‘4’	column.	
• The	number	between	each	pair	of	numbers	in	the	‘2’	column	equals	the	average	

of	the	two	numbers.	
• The	number	in	the	‘4’	column	is	double	the	number	in	between	the	pair	in	the	‘2’	

column.	
• All	three	“triangles	have	the	same	shape	and	size.	
• If	you	move	the	triangles	up	or	down	any	number	of	squares,	the	patterns	

continue	to	hold	true.	
• If	you	rotate	the	triangles	clockwise	90°,	the	patterns	continue	to	hold	true.	
Right	picture:	
• The	patterns	from	the	left	picture	still	apply,	except	that	you	can	replace	all	

statements	about	the	‘2’	column	by	the	‘3’	column	and	all	statements	about	the	
‘4’	column	by	‘8’	column.	
	

Generalizing	the	patterns	
You	may	create	triangles	like	these	beginning	in	any	column	n.	The	right	“vertex”	of	
the	triangle	will	always	be	(1)	in	the	row	between	the	two	rows	in	column	n,	and	(2)	
in	column	2n.	
	
In	other	words,	as	you	move	the	triangles	to	the	right,	they	become	more	“stretched	
out.”	Their	rightmost	column	is	n	squares	to	the	right	of	the	two	squares	in	the	left	
column.	
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Proving	the	patterns	algebraically	
For	each	triangle,	suppose	that	the	square	between	the	two	left	squares	is	said	to	be	
the	“base	square”	(sitting	in	row	𝑎	and	column	𝑏).	Then	the	number	in	that	square	is	
𝑎𝑏,	and	the	numbers	in	the	triangle	are	represented	by	the	algebraic	expressions:	
	

Top	left	square	(TL)	 	 	 	(𝑎 − 1)𝑏	
Bottom	left	square	(BL)	 	 	(𝑎 + 1)𝑏	
Right	square	(R)	 	 	 	𝑎(2𝑏)	or	simply	2𝑎𝑏	
	
The	goal	is	to	prove	is	that	TL	+	BL	=	R.	
	

TL	+	BL	=	
𝑎 − 1 𝑏 + (𝑎 + 1)𝑏 =	
𝑎𝑏 − 𝑏 + 𝑎𝑏 + 𝑏 =	
2𝑎𝑏 =	
R	
	

You	may	also	use	these	calculations	to	verify	that	the	number	between	the	TL	
and	BL	squares	is	their	mean:	
	

	 Mean	of	TL	and	BL	=	
(TL	+	BL)	/	2	=		
2𝑎𝑏
2 =	

𝑎𝑏	
	

Choosing	a	different	“base	square”	
Suppose	you	choose	TL	as	the	base	square.	Then	TL	sits	inn	row	𝑎	and	column	𝑏.	In	
this	case:	

	

TL	+	BL	=	 	 	 	 R	=		
𝑎𝑏 + (𝑎 + 2)𝑏 =	 	 	 𝑎 + 1 2𝑏 =	
𝑎𝑏 + 𝑎𝑏 + 2𝑏 =	 	 	 𝑎 2𝑏 + 1 2𝑏 =	
2𝑎𝑏 + 2𝑏 =	 	 	 	 2𝑎𝑏 + 2𝑏	

	
Since	TL	and	R	are	equal	to	the	same	expression,	they	must	be	equal	to	each	other.		
	
Students	may	make	other	choices	for	the	base	square.	However,	they	must	be	
careful	that	their	algebraic	expressions	capture	general	relationships	that	apply	to	all	
of	the	triangles.	 	



	

©	Jerry	Burkhart,	2018.	
5280math.com	

Problem	#2	
	

	
	
Directions	

• Describe	one	or	more	patterns	involving	sums	of	numbers	in	each	set	of	shaded	
squares.	Prove	the	pattern(s)	algebraically.	

• Describe	one	or	more	patterns	involving	products	of	numbers	in	each	set	of	
shaded	squares.	Prove	the	pattern(s)	algebraically.	

• On	a	blank	multiplication	table,	shade	four	squares	at	the	corner	of	a	rectangle.	
Repeat	many	times.	Find	and	prove	one	or	more	patterns.	

	
	
	
	
	
Diving	Deeper	

• Place	copies	of	the	shape	

	
in	different	places	on	the	multiplication	table.	Look	for	patterns	and	prove	them	
algebraically.	

• Create	your	own	shapes	to	place	over	and	move	around	the	multiplication	table.		
Look	for	patterns	and	prove	them	algebraically.	 	
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Solutions	for	#2	
	
	
Throughout	the	Solutions	for	#2,	the	numbers	in	the	shaded	squares	are	abbreviated.	

Upper	left:	UL	 	 Upper	right:	UR	
	 	 								Center:	C	
Lower	left:	LL	 	 Lower	right:	LR	

	
Patterns	involving	sums	

UL	+	LR	is	always	two	greater	than	twice	C.	 UL	+	LR	=	2C	+	2	
UR	+	LL	is	always	two	less	than	twice	C.	 	 UR	+	LL	=	2C	–	2	
The	sum	of	the	four	“diagonal”	numbers	is	always	four	times	the	center	number.	
	
Some	students	may	note	that	the	pairs	directly	above/below	and	left/right	of	the	
center	number	have	sums	exactly	equal	to	twice	the	center	number!	(They	may	find	
many	other	patterns	as	well.)	
	 	 	 	 	

Proofs	of	the	patterns	
It	seems	natural	to	select	the	center	square	as	the	“base	square,”	in	which	case	C	=	
𝑎𝑏.	
	

UL	+	LR	=		
𝑎 − 1 𝑏 − 1 + 𝑎 + 1 𝑏 + 1 =	
𝑎𝑏 − 𝑎 − 𝑏 + 1 + 𝑎𝑏 + 𝑎 + 𝑏 + 1 =	
2𝑎𝑏 + 2 =	
2C	+	2	
	
UR	+	LL	=	
𝑎 − 1 𝑏 + 1 + 𝑎 + 1 𝑏 − 1 =	
𝑎𝑏 + 𝑎 − 𝑏 − 1 + 𝑎𝑏 − 𝑎 + 𝑏 − 1 =	
2𝑎𝑏 − 2 =	
2C	–	2	
	
UL	+	LR	+	UR	+	LL	=	(2C	+	2)	+	(2C	–	2)	=	4C		
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Patterns	involving	products	
Opposite	corners	have	the	same	product.	In	other	words:	

UL	•	LR	=	UR	•	LL.	
	

This	pattern	is	not	limited	to	the	types	of	pictures	shown.	It	applies	to	any	set	of	four	
squares	in	the	multiplication	table	that	form	the	corners	of	a	rectangle	(with	
horizontal	and	vertical	sides).	
	

Patterns	at	the	corners	of	rectangles	
If	the	corners	of	the	rectangle	are	defined	by	rows	𝑎	and	𝑐	and	by	columns	𝑏	and	𝑑,	
then	their	squares	contain	the	products	shown	below.	

	
	

The	products	of	opposite	corners	are	(𝑎𝑏)(𝑐𝑑)	and	(𝑎𝑑)(𝑐𝑏),	which	are	equal	by	
the	commutative	and	associative	properties	of	multiplication.	
	
Some	students	may	recognize	that	corner	squares	always	form	equivalent	fractions.		

𝑎𝑏
𝑐𝑏 =

𝑎𝑑
𝑐𝑑 			or			

𝑎𝑏
𝑎𝑑 =

𝑐𝑏
𝑐𝑑	

	

Therefore,	this	rectangle	pattern	is	simply	the	familiar	cross-product	relationship	for	
equivalent	fractions!		
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You	could	also	use	a	base	square	to	carry	out	a	proof.	Since	the	rectangles	do	not	
necessarily	have	a	“center	square,”	you	might	choose	one	corner	(say	UL)	as	the	
base	square,	meaning	that	UL	is	in	row	𝑎	and	column	𝑏.	Suppose	that	UR	is	𝑤	
squares	to	the	right	of	UL,	and	LL	is	𝑙	squares	below	UL.	Then	the	algebraic	
expressions	for	each	corner	are:	
	

Upper	left	(UL)	 	 𝑎𝑏	
Upper	right	(UR)	 	 𝑎(𝑏 + 𝑤)	
Lower	left	(LL)		 	 (𝑎 + 𝑙)𝑏	
Lower	right	(LR)	 	 (𝑎 + 𝑙)(𝑏 + 𝑤)	
	
UL	•	LR	=		
𝑎𝑏 𝑎 + 𝑙 𝑏 + 𝑤 =	
𝑎 𝑏 + 𝑤 𝑎 + 𝑙 𝑏 =								(commutative	and	associative	properties	of		 	
	 	 	 	 multiplication)	
UR	•	LL	
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Stage	2	
	

	
In	Stage	2,	students	use	multiplication	tables	to	explore	well-known	algebraic	patterns	
involving	square	numbers	and	differences	of	squares.	They	investigate	the	results	of	
extending	these	patterns	beyond	whole	numbers	by	using	a	multiplication	table	
containing	fractions	and	mixed	numbers	(or	decimals).	
	
Handouts	#1	and	#2	at	the	end	of	this	project	provide	unshaded	multiplication	tables	
that	students	may	find	helpful	in	exploring	the	questions	and	extending	the	
investigation.	
	
What	students	should	know	

• Describe	patterns	using	algebraic	expressions.	
• Simplify	polynomials	by	combining	like	terms	
• Multiply	simple	polynomials,	including	binomials	by	binomials.	

	
What	students	will	learn	

• Recognize,	extend,	and	describe	complex	patterns.	
• Use	algebraic	processes	to	prove	conjectures.	
• Deepen	knowledge	of	known	algebraic	relationships	and	discover	new	ones.	
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Problem	#3	
	

	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
Directions	

• Describe	patterns	within	and	between	the	bold-outlined	squares	and	the	other	
shaded	squares.	

• Generalize	any	of	the	patterns	that	you	can.	
• Try	to	prove	the	pattern(s)	algebraically.	If	this	is	too	difficult,	use	words	or	

diagrams	to	explain	what	causes	the	patterns.	
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Solutions	for	#3	
	
	

Some	key	patterns	in	the	left	table	
• The	numbers	along	the	main	diagonal	are	square	numbers.	
• The	number	that	is	1	square	above	and	to	the	right	of	each	main-diagonal	

number	is	always	1	less	than	the	number	on	the	main	diagonal.	
	
Algebraic	proofs	of	the	key	patterns	in	the	left	table	

• The	row	and	column	numbers,	𝑎	and	𝑏,	are	equal	for	each	number	on	the	main	
diagonal.	Suppose	that	𝑎 = 𝑏 = 𝑛.	Then	the	main	diagonal	number	is	

𝑎 ∙ 𝑏 = 𝑛 ∙ 𝑛 = 𝑛3.	
In	other	words,	it	is	a	square	number.	

• The	number	that	is	1	square	above	and	to	this	right	of	the	main	diagonal	number	
belongs	to	row	𝑛 − 1	and	column	𝑛 + 1.	An	algebraic	expression	for	its	value	is	

𝑛 − 1 𝑛 + 1 =	
𝑛3 + 𝑛 − 𝑛 − 1 =	

𝑛3 − 1,	
which	shows	that	it	is	always	1	less	than	the	corresponding	main-diagonal	value.	
	

A	key	pattern	in	the	right	table	
The	number	that	is	2	squares	above	and	to	the	right	of	each	main-diagonal	number	
is	4	less	than	the	number	on	the	main	diagonal.	

	
Algebraic	proof	of	the	key	pattern	in	the	right	table	

The	number	that	is	2	squares	above	and	to	this	right	of	the	main	diagonal	number	
belongs	to	row	𝑛 − 2	and	column	𝑛 + 2.	An	algebraic	expression	for	its	value	is	

𝑛 − 2 𝑛 + 2 =	
𝑛3 + 2𝑛 − 2𝑛 − 4 =	

𝑛3 − 4,	
which	shows	that	it	is	always	4	less	than	the	corresponding	main-diagonal	value.	
	

A	generalization	and	a	proof	
The	number	that	is	𝑘	squares	above	and	to	the	right	of	the	main	diagonal	number	
belongs	to	row	𝑛 − 𝑘	and	column	𝑛 + 𝑘.	An	algebraic	expression	for	its	value	is	

𝑛 − 𝑘 𝑛 + 𝑘 =	
𝑛3 + 𝑘𝑛 − 𝑘𝑛 − 𝑘3 =	

𝑛3 − 𝑘3,	
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which	shows	that	it	is	always	𝑘3	less	than	the	corresponding	main-diagonal	value.	
	

A	pattern	within	the	main	diagonal	
The	square	numbers	on	the	main	diagonal	are	equal	to	sums	of	consecutive	odd	
numbers.	For	example,	

13 = 1 = 𝟏	
23 = 4 = 1 + 𝟑	

33 = 9 = 1 + 3 + 𝟓	
43 = 16 = 1 + 3 + 5 + 𝟕	

etc.	
	

You	can	illustrate	and	justify	the	pattern	with	pictures.	

	
Another	option	is	to	examine	differences	between	the	consecutive	square	numbers	
𝑛3	and	(𝑛 + 1)3.	

𝑛 + 1 3 − 𝑛3 =	
𝑛 + 1 𝑛 + 1 − 𝑛3 =	
𝑛3 + 𝑛 + 𝑛 + 1 − 𝑛3 =	

2𝑛 + 1	
Because	𝑛	is	a	whole	number,	2𝑛	is	an	even	number.	Therefore,	2𝑛 + 1	must	be	an	
odd	number.	
	
To	show	that	consecutive	differences	are	consecutive	odd	numbers,	you	can	
examine	the	difference	between	the	next	pair	of	square	numbers,	(𝑛 + 1)3	and	
(𝑛 + 2)3.	

𝑛 + 2 3 − (𝑛 + 1)3 =	
𝑛 + 2 𝑛 + 2 − 𝑛 + 1 𝑛 + 1 =	

𝑛3 + 2𝑛 + 2𝑛 + 4 − (𝑛3 + 𝑛 + 𝑛 + 1) =	
𝑛3 + 4𝑛 + 4 − (𝑛3 + 2𝑛 + 1) =	
𝑛3 + 4𝑛 + 4 − 𝑛3 − 2𝑛 − 1 =	

2𝑛 + 3	
	

2𝑛 + 3	is	2	greater	than	2𝑛 + 1.	Therefore,	it	is	next	in	the	sequence	of	consecutive	
odd	numbers	after	2𝑛 + 1.	
	
There	are	many	other	possible	patterns	and	methods	of	proving	them.	 	
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Problem	#4	
	
	
	

															
	
	
	
	
	
	
	
	
	

	
	
	
Directions	

• Find	the	values	that	belong	the	empty	shaded	squares.	
• Use	your	values	to	compare	and	contrast	patterns	in	these	tables	to	the	patterns	

in	Problems	#2	and	#3.	
• Use	algebra	to	prove	as	many	of	your	comparisons	and	discoveries	as	you	can.	

	
	
	
	
	
	
	
	
	
	
	
	
Diving	Deeper	

• Experiment	with	extending	the	multiplication	table	upward	and	to	the	left	into	
negative	numbers.	Look	for	similar	types	of	patterns.	
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Solutions	for	#4	
	

	
The	full	table	(with	shading	from	the	left	table)	

Students	need	not	complete	the	entire	table,	but	I	include	it	here	for	reference.	
	

	
	
Patterns	of	sums	in	the	left	table	

The	patterns	of	sums	are	similar	to	those	in	the	original	table	in	Problem	#3.	The	
”diagonal”	numbers	are	now	?@	(instead	of	2)	greater	or	less	than	twice	the	center	
number.	The	sum	of	all	four	diagonal	numbers	is	still	four	times	the	center	number.	
	
UL	+	LR	is	always	?@	greater	than	twice	C.	 	 UL	+	LR	=	2C	+	?@	
UR	+	LL	is	always	?@	less	than	twice	C.	 	 UR	+	LL	=	2C	–	?@	
	 	 	 	 	 	 	 UL	+	UR	+	LL	+	LR	=	4C	
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Proofs	of	the	patterns	of	sums	in	the	left	table	
UL	+	LR	=		

𝑎 − A
3

𝑏 − A
3
+ 𝑎 + A

3
𝑏 + A

3
=	

𝑎𝑏 − A
3
𝑎 − A

3
𝑏 + A

B
+ 𝑎𝑏 + A

3
𝑎 + A

3
𝑏 + A

B
=	

2𝑎𝑏 + A
3
=	

2C	+	?@	
	
UR	+	LL	=	

𝑎 − A
3

𝑏 + A
3
+ 𝑎 + A

3
𝑏 − A

3
=	

𝑎𝑏 + A
3
𝑎 − A

3
𝑏 − A

B
+ 𝑎𝑏 − A

3
𝑎 + A

3
𝑏 − A

B
=	

2𝑎𝑏 − A
3
=	

2C	–	?@	
	
UL	+	LR	+	UR	+	LL	=	(2C	+	?@)	+	(2C	–	

?
@)	=	4C		

	
Patterns	of	products	in	the	left	table	

	The	patterns	of	products	in	the	left	table	are	the	same	as	those	in	Problem	#3:	the	
products	of	numbers	in	opposite	corner	squares	are	equal.	
	

1
4 ∙ 2

1
4 =

9
16 =

3
4 ∙
3
4	

	

3 ∙ 8 = 24 = 4 ∙ 6	
	

7
1
2 ∙ 14 = 105 = 10

1
2 ∙ 10	

	
	

The	proof	of	this	fact	is	identical	to	the	(first)	corresponding	proof	in	Problem	#3.	
	
	 	



	

©	Jerry	Burkhart,	2018.	
5280math.com	

	
The	full	table	(with	shading	from	the	right	table)	

Again,	students	need	not	complete	the	entire	table.	
	

	
	
Patterns	in	the	right	table	

• The	numbers	along	the	main	diagonal	are	squares	of	the	multiples	of	?@.	

03 = 0							
1
2

3

=
1
4						1

3 = 1						 1
1
2

3

= 2
1
4 						etc.	

• The	number	that	is	1	square	above	and	to	the	right	of	each	main-diagonal	
number	is	always	?I	less	than	the	number	on	the	main	diagonal.	

• In	general,	the	number	that	is	𝑘	squares	above	and	to	the	right	of	the	main	

diagonal	number	is	 J
3

3
	or	J

@

B
	less	than	the	number	on	the	main	diagonal,	

because	

𝑛 − J
3

𝑛 + J
3
=	

𝑛3 + J
3
𝑛 − J

3
𝑛 − J@

B
=	

𝑛3 − K@

I .	
	
Students	may	have	many	other	observations,	generalizations,	and	proofs.	 	

4

0

2

0 1 2 3 4
0000

43210

86420

0 3 6 9 12

0 8 12 164

3

2

1

0
  ∙

00000

0

0

0

0

0 1
4

1
2

1
2

1
2

3
4 1 1

3
4

1
1
2

1
1
4 2 2

1
4

1
1
2

2
1
2

3
1
2

4
1
2

4
1
2

3
1
2

2
1
2

1
1
2

1
2

1
1
2

6
3
465

1
4

4
1
2

3
3
432

1
4

1
1
2

3
4

91 753
2
1
2

1
1
4

2
1
2

3
3
4 5 6

1
4

7
1
2 108

3
4

11
1
4

1
1
2

4
1
2

7
1
2

10
1
2

13
1
2

3
1
2

1
3
4

3
1
2

5
1
4 7 8

3
4

10
1
2

12
1
4 14 15

3
4

6 10 14 18
4
1
2

2
1
4

4
1
2

6
3
4 9 11

1
4

13
1
2

15
3
4 18 20

1
4

  ∙

12

3

0



	

©	Jerry	Burkhart,	2018.	
5280math.com	

Stage	3	
	
	
In	Stage	3,	students	investigate	a	pair	of	complex	patterns	that	lead	to	a	beautiful	and	
surprising	connection	between	square	and	cube	numbers.	
	
What	students	should	know	

• Describe	patterns	using	algebraic	expressions.	
• Simplify	polynomials	by	combining	like	terms	
• Multiply	simple	polynomials,	including	binomials	by	binomials.	
• Think	of	complex	expressions	as	a	single	quantity.	

	
What	students	will	learn	

• Recognize,	extend,	and	describe	complex	patterns.	
• Use	algebraic	processes	to	prove	conjectures.	
• Deepen	knowledge	of	known	algebraic	relationships	and	discover	new	ones.	
• Use	the	distributive	property	in	reverse	(to	factor	complex	expressions).	
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Problem	#5	
	

	
	

	
Directions	

• Find	a	pattern(s)	involving	sums	in	the	different	regions	(shaded	and	unshaded).	
• Explain	what	causes	the	pattern(s).	Use	algebra	when	and	if	it	makes	your	

explanation	more	convincing	or	clearer.	
	
	
	
	
	
	

	 	

  ∙

1
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9
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Solutions	for	#5	
	

The	key	pattern	
The	sums	in	the	shaded	“L”	regions	are	successive	perfect	cubes.	
	

1 = 1 = 1L	
2 + 4 + 2 = 8 = 2L	

3 + 6 + 9 + 6 + 3 = 27 = 3L	
4 + 8 + 12 + 16 + 12 + 8 + 4 = 64 = 4L	

5 + 10 + 15 + 20 + 25 + 20 + 15 + 10 + 5 = 125 = 5L	
etc.	

The	sums	are	the	cubes	of	the	row/column	numbers	for	each	“L.”	
	

The	cause	of	the	pattern	
First,	notice	that	each	corner	number	is	the	square	of	the	row/column	number,	𝑛.	
You	can	regroup	each	sum	into	𝑛	groups	of	𝑛3,	which	equals	𝑛3 ∙ 𝑛 = 𝑛L.	
	

2 + 4 + 2 =	
4 + 2 + 2 =	
4 + 4 =	
23 + 23 =	
23 ∙ 2 = 2L	

	

3 + 6 + 9 + 6 + 3 =	
9 + 3 + 6 + (6 + 3) =	

9 + 9 + 9 =	
33 + 33 + 33 =	
33 ∙ 3 = 3L	

	

4 + 8 + 12 + 16 + 12 + 8 + 4 =	
16 + 4 + 12 + 12 + 4 + (8 + 8) =	

16 + 16 + 16 + 16 =	
43 + 43 + 43 + 43 =	

43 ∙ 4 = 4L	
	

5 + 10 + 15 + 20 + 25 + 20 + 15 + 10 + 5 =	
25 + 5 + 20 + 10 + 15 + 20 + 5 + (15 + 10) =	

25 + 25 + 25 + 25 + 25 =	
53 + 53 + 53 + 53 + 53 =	

53 ∙ 5 = 5L	
etc.	 	
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In	general,	when	𝑛	is	odd,	there	is	one	copy	of	𝑛3	in	the	corner	and	MNA

3
	pairs	that	

have	a	sum	of	𝑛3	in	each	of	the	right	and	bottom	pieces	of	the	“L,”	giving	total	of		
	

1 +
𝑛 − 1
2 +

𝑛 − 1
2 = 1 + 𝑛 − 1 = 𝑛	

	

copies	of	𝑛3.	
	

When	𝑛	is	even,	there	is	one	copy	of	𝑛3	in	the	corner,	MN3
3
	pairs	that	have	a	sum	of	

𝑛3	within	each	of	the	right	and	bottom	pieces	of	the	“L,”	and	one	more	pair	that	

contains	the	middle	number	(M
@

3
)	from	each	piece	of	the	“L,”	giving	a	total	of		

	

1 +
𝑛 − 2
2 +

𝑛 − 2
2 + 1 = 1 + 𝑛 − 2 + 1 = 𝑛	

	

copies	of	𝑛3.	
	
In	order	to	understand	why	each	of	these	pairs	will	always	have	a	sum	of	𝑛3,	it	helps	
to	look	closely	at	the	list	of	the	multiples	of	𝑛	that	occurs	in	each	row	(or	column)	of	
the	“L”	(excluding	the	corner	square).	
	

𝑛 1 			𝑛 2 			𝑛 3 				⋯ 			𝑛 𝑘 			⋯ 			𝑛 𝑛 − 𝑘 			⋯ 		𝑛 𝑛 − 3 			𝑛 𝑛 − 2 			𝑛(𝑛 − 1)	
	

𝑛 1 + 	𝑛 𝑛 − 1 = 𝑛 + 𝑛3 − 𝑛 = 𝑛3	
𝑛 2 + 𝑛 𝑛 − 2 = 2𝑛 + 𝑛3 − 2𝑛 = 𝑛3	
𝑛 3 + 𝑛 𝑛 − 3 = 3𝑛 + 𝑛3 − 3𝑛 = 𝑛3	

and,	in	general,	
𝑛 𝑘 + 𝑛 𝑛 − 𝑘 = 𝑘𝑛 + 𝑛3 − 𝑘𝑛 = 𝑛3.	

	
Notice	that	the	list	clearly	contains	𝑛 − 1	items.	If	𝑛	is	odd,	then	𝑛 − 1	is	even,	and	
the	list	must	contain	MNA

3
	pairs.	If	𝑛	is	even,	then	𝑛 − 1	is	odd,	and	there	will	be	one	

item	remaining	after	the	numbers	are	paired	off	(the	middle	number).	If	you	remove	

this	number	from	the	list,	𝑛 − 2	numbers	remain,	and	you	have	MN3
3
	pairs.	These	

facts	provide	more	detailed	support	for	the	observations	in	the	first	two	paragraphs	
on	this	page.	
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Problem	#6	
	
	

			 			 	
	
	
Directions	

• Find	a	pattern	involving	sums	in	the	bold-outlined	regions.	
• Use	algebra	to	prove	your	pattern.	
• Explain	why	(or	prove	that)	

1L + 2L + 3L + ⋯+ 𝑘L = 1 + 2 + 3 +⋯+ 𝑘 3.	
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Solutions	for	#6	
	

	
The	key	pattern	involving	sums	in	the	bold-outlined	regions	

The	sums	are	
1 = 13	

	
1 + 2 + 2 + 4 = 9	
9 = 33 = (1 + 2)3	

	
1 + 2 + 3 + 2 + 4 + 6 + 3 + 6 + 9 = 36	

36 = 63 = (1 + 2 + 3)3	
	

1 + 2 + 3 + 4 + 2 + 4 + 6 + 8 + 3 + 6 + 9 + 12 + 4 + 8 + 12 + 16 = 100	
100 = 103 = (1 + 2 + 3 + 4)3	

etc.	
	

Each	sum	is	a	perfect	square:	
1, 9, 36, 100, 225,	etc.	

	
The	bases	of	the	exponential	expressions	are	

1, 3, 6, 10, 15,	etc.,	
	

which	are	the	triangular	numbers.	Triangular	numbers	result	from	the	pattern	
1	

1 + 2	
1 + 2 + 3	

1 + 2 + 3 + 4	
1 + 2 + 3 + 4 + 5	

etc.	
	

Understanding	and	proving	the	pattern	
In	order	to	understand	the	pattern,	try	a	few	examples	focusing	on	one	row	at	a	
time.	

1 + 2 + 2 + 4 =	
1 + 2 + 2 1 + 2 =	
1 + 2 1 + 2 =	

(1 + 2)3	
	

(1 + 2 + 3) + (2 + 4 + 6) + (3 + 6 + 9) =	
1 + 2 + 3 + 2 1 + 2 + 3 + 3 1 + 2 + 3 =	

1 + 2 + 3 1 + 2 + 3 =	
1 + 2 + 3 3	
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1 + 2 + 3 + 4 + 2 + 4 + 6 + 8 + 3 + 6 + 9 + 12 + 4 + 8 + 12 + 16 =	
1 + 2 + 3 + 4 + 2 1 + 2 + 3 + 4 + 3 1 + 2 + 3 + 4 + 4 1 + 2 + 3 + 4 =	

1 + 2 + 3 + 4 1 + 2 + 3 + 4 =	
1 + 2 + 3 + 4 3	

etc.	
	

The	general	𝑘QR	square	has	the	sum	
	

			1 1 + 2 + 3 +⋯+ 𝑘 	
+2 1 + 2 + 3 +⋯+ 𝑘 	
+3 1 + 2 + 3 +⋯+ 𝑘 	
																				⋮	
+𝑘 1 + 2 + 3 +⋯+ 𝑘 	
	
= 1 + 2 + 3 +⋯+ 𝑘 1 + 2 + 3 +⋯+ 𝑘 	
= 1 + 2 + 3 +⋯+ 𝑘 3	
	
In	all	of	the	examples	and	in	the	general	pattern,	the	expression		

1 + 2 + 3 +⋯+ 𝑘	
	

is	a	common	factor	within	each	term.	Near	the	end	of	the	process,	you	factor	
this	term	out.	
	

Proving	that	1L + 2L + 3L + ⋯+ 𝑘L = 1 + 2 + 3 +⋯+ 𝑘 3	
Imagine	the	bold-outlined	square	in	the	multiplication	table	whose	rows	(and	
columns)	run	from	1	to	𝑘.	Consider	two	ways	to	find	the	sum	of	all	numbers	in	this	
square.	
	
(1) Using	the	ideas	from	Problem	#5,	add	the	sums	in	each	of	the	“Ls.”	Since	each	

sum	is	the	cube	of	its	row/column	number,	the	result	is	
	

1L + 2L + 3L + ⋯+ 𝑘L.	
	

(2) Using	the	ideas	from	earlier	in	this	problem,	add	the	numbers	one	row	at	a	time,	
factoring	as	needed.	The	result	is	

	

1 + 2 + 3 +⋯+ 𝑘 3	
	

Since	the	sum	must	be	the	same	regardless	of	how	you	calculate	it,	the	two	
expressions	above	must	be	equivalent.	That	is:	
	

1L + 2L + 3L + ⋯+ 𝑘L = 1 + 2 + 3 +⋯+ 𝑘 3.	
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Handout	#1	
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Handout	#2	
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